Принцип Аккермана в рулевом управлении

Про-Аккерман и Анти-Аккерман


Угол бокового увода - главная переменная в истории с Аккерманом

 

Угол бокового увода определяется различием между углом поворота колеса и действительным направлением движения колеса. Механизм создания угла бокового увода взаимодействует с целым рядом настроек подвески шасси. Однако, наш интерес в этой статье состоит во взаимодействии угла бокового увода с динамическим схождением.

                        

 

Рисунок 1


Когда шасси совершает поворот на скорости, рулевая геометрия Аккермана существенно модифицируется углами бокового увода, как показано на Рисунке 1. При максимальном боковом ускорении можно ожидать величину углов бокового увода в диапазоне от 5 до 8 градусов. Низкопрофильные шины работают при меньших углах бокового увода. Самые жесткие шины могут работать при 2 градусах угла бокового увода. Шины для внедорожников могут работать вплоть до 40 градусов угла бокового увода.

При прохождении поворота, нагрузка на колеса изменяется со стороны на сторону, и углы бокового увода увеличиваются и уменьшаются в ответ на изменения. Вертикальная нагрузка на изменяется в соответствии с переносом веса, а также колеса нагружаются и разгружаются в ответ на ухабы на дорожной поверхности.

      

Рисунок 2


Рисунок 2 является примером графика зависимости боковых сил от угла бокового увода. Если мы собираемся получить представление, как работают углы схождения, подобные данные могут нам помочь.

По мере нарастания боковых сил на шине, угол бокового увода быстро увеличивается. Плавное нарастание кривой характеризует отзывчивость шины на рулевое воздействие. Когда достигается максимальная боковая сила, кривая перегибается. Если водитель не перегружает шины, он управляет на этом участке кривой. Если водитель нагружает шины больше, он использует более высокие углы бокового увода, со сходными боковыми силами (боковое ускорение, сцепление), но с возможностью перегрева шин. График также показывает эффект изменения вертикальной нагрузки на шину. Нижняя кривая может представлять внутреннюю шину. Она имеет высокий коэффициент сцепления = 2. В этом случае боковая сила в два раза больше вертикальной нагрузки. Верхняя кривая может представлять внешнюю шину. Она имеет меньший коэффициент сцепления = 1,4, и ее боковая сила составляет только 1,4 от вертикальной нагрузки.

График показывает, что происходит при небольшой величине угле бокового увода и боковой силы, и как картина изменяется по мере приближения к пределу, при увеличении угла бокового увода и больших величинах переноса веса.

Во-первых, интересно то, что по мере того, как переднее внешняя шина нагружается в повороте, она примет более высокий угол бокового увода, чем менее нагруженная внутренняя шина. Нагруженная шина будет иметь большее расхождение, чем менее нагруженная внутренняя шина. Мы ожидает, что более нагруженная внешняя шина будет контролировать траекторию шасси в повороте, поэтому все имеющееся расхождение окажется на внутренней шине. Геометрия Аккермана также будет производить дополнительное расхождение. Какое расхождение может выдержать шасси перед тем, как оно начнет волочить внутреннюю шину? Будет ли внутренняя шина терять сцепление? Очевидно, что прирост или потеря сцепления будет происходить на внутренней шине, в предположении, что сцепление внешней шины находится на максимуме, а шасси сбалансировано.


На этом этапе можно сделать ряд наблюдений:

  • Предположим, что шасси проходит поворот при максимальном боковом ускорении и различие между углами бокового увода внешней и внутренней шины составляет 1 градус. Это эквивалентно увеличению расхождения. Это существенное изменение в расхождении, которое может повлиять на управляемость.
  • По мере того, как шина перемещается по повороту, любые изменения в нагрузке на колесо, от рулевого воздействия или воздействия дорожной поверхности, будет приводить к изменению расхождения (вследствие изменения углов бокового увода). Эти изменения складываются с геометрией Аккермана и паразитным подруливаем на ухабах (bump steer), которые обусловлены геометрией подвески и рулевого управления. Весьма сложно визуализовать взаимозависимость углов бокового увода со всеми этими переменными. Но к счастью, похоже, что мы имеем достаточно большое окно, где сцепление внутренней шины будет находиться в приемлемом диапазоне. Кривая на Рисунке 2 показывает достаточно постоянный уровень сцепления для легко нагруженной шины в диапазоне между 4 и 8 градусами. Это означает, что внутренняя шина может выдерживать достаточно большие вариации угла бокового увода, и по прежнему оставаться в районе максимального сцепления. Это означает, что в середине поворота, даже при больших углах расхождения, мы можем иметь почти максимальное сцепление на внутренней шине. Глядя на схождение и углы бокового увода, может показаться, что мы волочим внутреннюю шину, но это не так, пока мы удерживаемся в районе максимального сцепления.
  • На входе в поворот, нам необходима большая точность в динамическом схождении. Первоначально, эффект Аккермана отсутствует, таким образом мы смотрим только на статическое схождение, плюс развивающиеся углы бокового увода.
                                  

     

Рисунок 3


Статическое расхождение или схождение создает "искусственный" угол бокового увода на каждой передней шине и, следовательно, боковое сцепление. Посмотрите на рисунок 3. Расхождение может способствовать сцеплению внутренней шины. В частности, расхождение помогает компенсировать отрицательный развал на внутреннем колесе. Отрицательный развал может быть оптимизирован для внешнего колеса, но он всегда работает против вас на внутреннем колесе.

Для спортивного шасси, использующего расхождение, механизм прохождения поворота может выглядеть примерно так:

При входе в поворот, внутреннее колесо имеет расхождение и уже обладает небольшим углом бокового увода. Шине нагружена статическим весом плюс переносом веса от торможения, поэтому шина сразу отзывается, направляя шасси в поворот. Внешнее колесо также имеет расхождение, но в неверном направлении для поворота шасси. Поэтому, шина должна развить начальный угол бокового увода, а затем начать с нуля для развития угла бокового увода в правильном направлении. По мере того, как шасси начинает переносить вес в повороте, внешняя шина наращивает эффективность, поворачивая шасси внутрь поворота. Внутренняя шина начинает терять боковую силу, а внешняя шина по мере роста нагрузки наращивает боковую силу. В этот момент, относительное преимущество прироста развала еще больше увеличивает сцепление внешней шины.

                 


Рисунок 4


Предпочтительная геометрия рулевого управления является функцией графика кривых шины.

На Рисунке 4, если график кривых шины показывает смещение максимума боковой силы при малой нагрузке на шину в сторону увеличения углов бокового увода, это предполагает использование Про-Аккермана. Если график кривых шины показывает смещение максимума боковой силы при малой нагрузке на шину в сторону уменьшения углов бокового увода, тогда можно ожидать, что использование Анти-Аккермана даст лучшие результаты. В этом случае нам будет более выгодно снизить угол бокового вода на внутренней легко нагруженной шине, т.е. нам нужно получить динамическое схождение на внутреннем колесе.

Однако, для нашего автомодельного применения у нас нет никаких данных по шинам, поэтому мы не можем использовать эти соображения, можем только оставить это в багаже для общего понимания.

 

Почему может быть полезен Анти-Аккерман?

Тестирование статического схождения дает следующие результаты:

  • Статическое схождение дает преимущество в медленных крутых поворотах.
  • Статическое расхождение дает преимущество в быстрых широких поворотах.
 

Медленный поворот

Быстрый поворот

Статическое схождение

+ + +

-

Статическое расхождение

-

+ + +


Универсальным решением может быть использование статического расхождения в комбинации с Анти-Аккерманом.

  • Быстрые широкие повороты = небольшой угол поворота рулевого управления = расхождение остается практически неизменным.
  • Медленные крутые повороты = большой угол поворота рулевого управления = следовательно, быстрый переход от расхождения к схожден

 

 

 

Принцип Аккермана в рулевом управлении

По материалам: RcTek.
Автор перевода: Владислав Ярополов.

 

 

Принцип Аккермана определяет геометрию рулевого управления, которая применима для любых транспортных средств, с целью обеспечения корректного угла поворота рулевых колес при прохождении поворота или кривой.

До того, как принцип был разработан, транспортные средства того времени (с лошадиной тягой) были снабжены параллельными рулевыми рычагами и страдали от плохих характеристик рулевого управления. Рудольф Аккерман известен разработкой принципа использования наклонных рулевых рычагов, который устраняет эту проблему рулевого управления в транспортных средствах.

 

Почему и как?

                                                    

 

Рисунок изображает автомобиль, идущий через поворот (в данном случае, поворот бесконечен). Красные линии изображают путь, по которому движутся колеса. Вы можете заметить, что внутренние колеса автомобиля следуют по окружности меньшего диаметра, чем внешние колеса.

Если оба колеса повернуты на одинаковую величину, внутреннее колесо будет скрестись по дороге (будет скользить боком) и будет снижать эффективность рулевого управления. Это скольжение колеса, которое также создает нежелательный нагрев и износ колеса, может быть устранено с помощью поворота внутреннего колеса на больший угол, чем угол поворота внешнего колеса.

                                                            

 

 

Различие в углах внутреннего и внешнего колес может быть лучше понято путем изучения рисунка, где помечены внутренний и внешний радиусы, по которым движутся каждое из колес. Внутренний радиус (Ri) и внешний радиус (Ro) зависят от ряда факторов, включая ширину автомобиля и крутизну поворота, который собирается пройти автомобиль.

Следовательно, величины углов рычагов не определяются этими линиями, они определяются расстояниями, показанными в последующих разделах "Увеличенный", "Уменьшенный" и "Точный угол Аккермана" в рулевом управлении.

Расположение обоих колес в надлежащем направлении движения обеспечивает стабильное управление без чрезмерного износа и нагрева каждого из колес.

Очевидно, что при повороте одного из колес более, чем другого, вы рассогласовываете направление колес и вам нужно это сделать в то же время обеспечивая прямое направление обоих колес, когда автомобиль не поворачивает. Для обеспечения этого, необходимо, чтобы рассогласование направления росло от нулевого значения (колеса направлены прямо вперед) до точки, в которой существует значительное различие в углах между обоими колесами (при максимальном повороте колес).

 

Углы рулевых рычагов

Создание рассогласования колес достигается путем комбинации угла и длины рулевых рычагов. Ниже вы сможете увидеть несколько рисунков, которые приводят примеры использования параллельных и наклонных рулевых рычагов, для демонстрации того, почему необходимо использовать принцип Аккермана в рулевом управлении.

 

Параллельные рулевые рычаги

                                        

 

На этом рисунке рулевые рычаги направлены прямо и параллельно боковым сторонам автомобиля, что создает ситуацию, в которой перемещение рулевого сервопривода приводит к равному угловому перемещению колес.

        

 

Почему происходит это равное угловое перемещение можно увидеть, изучив рисунок слева, на котором нарисована красная окружность для демонстрации того, как боковое перемещение рулевого рычага преобразуется в круговое перемещение. Так как шарнир рулевого рычага (A) выровнен по вертикали с осью поворота колеса (B), когда колесо указывает прямо вперед, то одинаковые перемещения влево или вправо перемещают шарнир рулевого рычага на одинаковую вертикальную дистанцию от начального положения.

 

Наклонные рулевые рычаги

                                        

 

На этом рисунке рулевые рычаги наклонены внутрь для создания возможности различной степени изменения углов поворота колес. Это является основой принципа Аккермана и создает неравное угловое перемещение колес.

             

 

Почему происходит это неравное угловое перемещение можно увидеть на рисунке, на котором отображено относительное положение шарнира рулевого рычага(A) на красной окружности, чтобы показать как шарнир рулевого рычага движется вокруг оси поворота колеса (B).

Так как рулевой рычаг наклонен, шарнир рулевого рычага (A) не выровнен по вертикали с осью поворота колеса (B), когда колесо указывает прямо вперед, и находится на части пути по окружности. Из-за этого, правое движение рулевого рычага вызывает большее перемещение шарнира рулевого рычага в вертикальном направлении, чем это имеет место при левом перемещении рулевого рычага.

Самым важным является то, что это неравное угловое перемещение является экспоненциальным, то есть, чем больше вы поворачиваете колесо, тем больше становится угловое различие между колесами - в противном случае оба колеса никогда не будут указывать прямо вперед, когда автомобиль не поворачивает.

                                     

 

Вышеприведенный умышленно подчеркнутый пример в результате приводит к угловому различию между колесами в диапазоне этого рисунка, тогда как пример с параллельными рулевыми рычагами будет обеспечивать одинаковые углы поворота колес с обоих сторон.

 

Увеличенный, уменьшенный и точный угол Аккермана в рулевом управлении

Это часто употребляемые термины в спортивном моделировании и они относятся к величине разницы в углах колес относительно точной геометрии угла Аккермана в рулевом управлении.

 

Точный угол Аккермана - нулевое схождение при повороте

                                                 

На рисунке изображена точная геометрия угла Аккермана в рулевом управлении. Это определяется наклоном рулевых рычагов таким образом, чтобы линии, проведенные через ось поворота колеса и шарнир рулевого рычага, пересекались в центре линии задней оси.

                                                                    

Так как это обеспечивает точную геометрию угла Аккермана в рулевом управлении, то в этом случае отсутствует изменение угла схождения на внутреннем колесе (направление колеса совпадает с направлением окружности), что можно увидеть на рисунке.

 

Увеличенный угол Аккермана - расхождение при повороте

                                                     


В настройке рулевого управления может быть использован увеличенный угол Аккермана, что включает в себя регулировку положения шарниров рулевых рычагов, чтобы линии, проведенные через ось поворота колеса и шарнир рулевого рычага, пересеклись перед центром задней оси.

                                                                     

 

Такая геометрия рулевого управления позволяет достичь увеличенного углового различия между повернутыми колесами, что приводит к тому, что внутреннее колесо пытается следовать по окружности меньшего диаметра, чем это имеет место в действительности. Этот эффект можно наблюдать на рисунке выше и он вызывает расхождение на переднем внутреннем колесе.

 

Уменьшенный угол Аккермана - схождение при повороте

                                                       



В настройке рулевого управления может быть использован уменьшенный угол Аккермана, что включает в себя регулировку положения шарниров рулевых рычагов, чтобы линии, проведенные через ось поворота колеса и шарнир рулевого рычага, пересеклись позади центра задней оси.

                                                                        

 

Такая геометрия рулевого управления позволяет достичь сниженного углового различия между повернутыми колесами, что приводит к тому, что внутреннее колесо пытается следовать по окружности большего диаметра, чем это имеет место в действительности. Этот эффект можно наблюдать на рисунке выше и он вызывает схождение на переднем внутреннем колесе.

 

Длина рычагов рулевого управления

Так как рулевые рычаги являются рычагами, их длина является более или менее свободной величиной, но она ограничена зазорами и доступным пространством в модели.

Величина перемещения, которая может осуществляться узлом сервопривод/тяги рулевого управления является также основным фактором, который вы должны учитывать при размышлениях о моментах вращения рычагов с различной длиной.

 

 

Как угол схождения влияет на углы Аккермана

Взаимодействие между углом схождения и углом Аккермана

 

Этот раздел описывает взаимодействие между углами Аккермана и углами схождения.

Примечание:

В последующих разделах приведены различные настройки, которые могут быть применены к модели автомобиля, но нужно учесть тот факт, что углы схождения могут быть установлены в любой угол и поэтому возможно бесконечное число вариантов.

Возможно обобщить только некоторые из рисунков, так как угол Аккермана фиксирован только в случае точного угла Аккермана - в случаях увеличенного и уменьшенного углов Аккермана, они не являются фиксированными углами.

 

Точный угол Аккермана вместе со схождением

                                                      

В этом примере автомобиль обладает схождением передних колес и точным углом Аккермана.

                                                                   


Когда колеса поворачиваются, это заканчивается расхождением обоих колес по отношению к круговым траекториям, по которым они следуют.

 

Уменьшенный угол Аккермана вместе со схождением

                                                   

 

В этом примере автомобиль обладает схождением передних колес и уменьшенным углом Аккермана.

                                                                    

 


Когда колеса поворачиваются, это заканчивается схождением обоих колес по отношению к круговым траекториям, по которым они следуют.

 

Уменьшенный угол Аккермана вместе с расхождением

                                                     

В этом примере автомобиль обладает расхождением передних колес и уменьшенным углом Аккермана.

                                                                      

Когда колеса поворачиваются, это заканчивается расхождением внешнего колеса и параллельностью внутреннего колеса по отношению к круговым траекториям, по которым они следуют.

Как упоминалось выше, угол поворота колес зависит от величины угла Аккермана и величины угла схождения. Углы на этом рисунке будут корректны только в том случае, если угол схождения равен по величине углу, который создает геометрия Аккермана.